

Synthesis and antiviral activities of N-substituted-2-substituted-benzimidazole derivatives

Ashish Kumar Tewari* & Anil Mishra†

Chemistry Department, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
Email: tashish2002@yahoo.com

1 Chemistry Department, Lucknow University, Lucknow 226 007, India
Email: mishraanil101@hotmail.com

Received 10 March 2005; accepted (revised) 20 July 2005

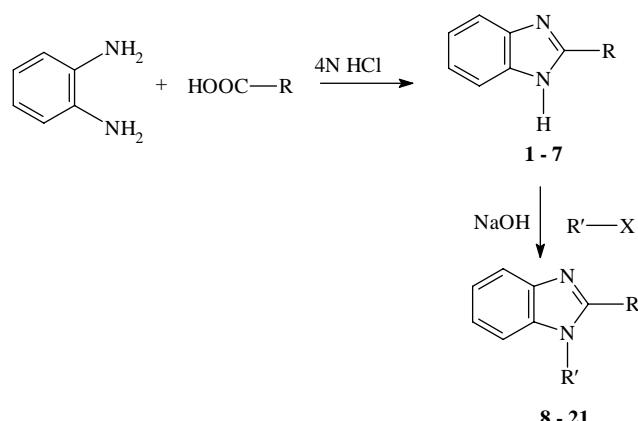
Two series of N-substituted-2-substituted benzimidazole derivatives, viz. 1-benzyl-2-substituted benzimidazole **8-14** and 1-(*p*-chlorophenyl)-2-substituted benzimidazole **15-21** have been synthesized and tested for their antiviral activities. These compounds have been screened for *Tobacco mosaic* viruses and *Sunhemp rosette* viruses and show significant activities.

Keywords: Benzimidazole derivatives, antiviral activities, *Tobacco mosaic*, *Sunhemp rosette*

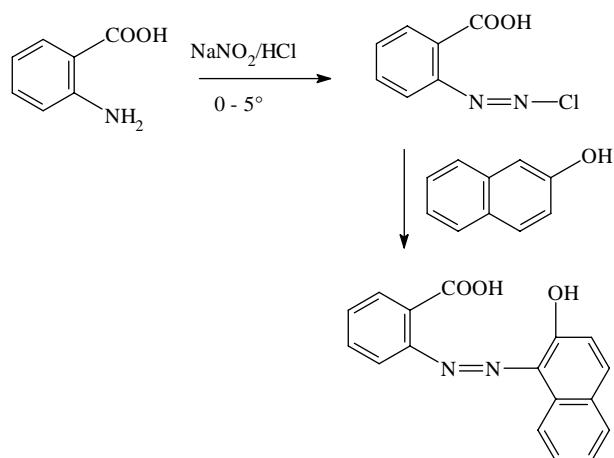
IPC: Int.Cl.⁷ C 07 D

Our interest in imidazole and pyrazole condensed heterocyclic/aromatic^{1,2} systems is due to their great therapeutic index³⁻⁵. A series of analogous and derivatives of benzimidazole have been reported to establish the effect of structure on antiviral activity⁶⁻¹⁰.

Benzimidazole derivatives have been demonstrated to inhibit Picornaviruses¹¹, Polioviruses¹², Enteroviruses¹³ etc. Broad antiviral applications of benzimidazole derivatives prompted us to synthesize various N-substituted and 2-substituted benzimidazoles and to evaluate their antiviral activities against *Tobacco mosaic* virus and *Sunhemp rosette* virus. The compounds were synthesized using Phillips condensation, by condensing the *o*-phenylene diamine and carboxylic acid derivatives in 4 N HCl, whereas N-substituted derivatives have been synthesized by reaction with alkyl/aryl halide in the presence of base, sodium hydride (**Scheme I**). Two derivatives were synthesized by diazotizing anthranilic acid followed by coupling with β -naphthol (**Scheme II**). This intermediate was then used to synthesize benzimidazole derivatives.


Mass spectral studies of the compounds have been carried out using electron ionization technique and a consistent pattern of mass fragmentation has been observed (**Scheme III**). The general fragmentation pattern of these compounds has started from the

substituent at positions 1 and 2. The molecular ion peak has been observed in all the compounds. The base peak in all the spectra has been observed at m/z 118, which is assigned to the unsubstituted benzimidazole nucleus.


Antiviral activity

Source of inoculum

Cultures of *Tobacco mosaic* virus¹⁴ (TMV, common strain) and *Sunhemp rosette* virus (SRV) were maintained by regular passage in their systemic hosts *Nicotiana tabacum* L. "NP 31" and *Gotobaria juncea*, respectively.

Scheme I

Scheme II

Compd	R	R'
1	-CH ₂ CH ₂ COOH	H
2	-C ₆ H ₄ OH(o)	H
3	-CH=CH.C ₆ H ₅	H
4	-CH ₂ CH ₂ CH ₂ CH ₂ COOH	H
5	-CHOH.CHOH.COOH	H
6	-C ₆ H ₄ COOH(o)	H
7	-C ₆ H ₄ N=N-C ₁₀ H ₆ -OH(2)	H
8	-CH ₂ CH ₂ COOH	-CH ₂ C ₆ H ₅
9	-C ₆ H ₄ OH(o)	-CH ₂ C ₆ H ₅
10	-CH=CH.C ₆ H ₅	-CH ₂ C ₆ H ₅
11	-CH ₂ CH ₂ CH ₂ CH ₂ COOH	-CH ₂ C ₆ H ₅
12	-CHOH.CHOH.COOH	-CH ₂ C ₆ H ₅
13	-C ₆ H ₄ COOH(o)	-CH ₂ C ₆ H ₅
14	-C ₆ H ₄ N=N-C ₁₀ H ₆ -OH(2)	-CH ₂ C ₆ H ₅
15	-CH ₂ CH ₂ COOH	-C ₆ H ₅ Cl
16	-C ₆ H ₄ OH(o)	-C ₆ H ₅ Cl
17	-CH=CH.C ₆ H ₅	-C ₆ H ₅ Cl
18	-CH ₂ CH ₂ CH ₂ CH ₂ COOH	-C ₆ H ₅ Cl
19	-CHOH.CHOH.COOH	-C ₆ H ₅ Cl
20	-C ₆ H ₄ COOH(o)	-C ₆ H ₅ Cl
21	-C ₆ H ₄ N=N-C ₁₀ H ₆ -OH(2)	-C ₆ H ₅ Cl

Preparation of virus inoculum

Virus inoculum was prepared by grinding 3 to 4 of fresh diseased leaves in a mortax with distilled water (DW, 1 g/mL). The pulp was squeezed through two layers of muslin cloth, and the filtrate was centrifuged and diluted with distilled water to obtain 200-600 lesions on leaves after inoculation with a virus inoculum.

Host Plant

Seeds of N-tabacum 'samsun NN' and *Cyamopsis tetragonoloba* (L) Taub were sown in clay pots. The seedlings were transplanted to 12 cm diameter clay pots filled with compost and transferred to an insect free green house. For experimental work, somsun NN and N Glutinosa L plants were used at the 5 to 6 leaf

stage and *Cyamopsis* plants were used at the 4-leaf stage (3 unifoliate leaves and 1 trifoliate leaf). All the experiments were performed with a minimum of three replicates (minimum three plants with three or four leaves) per treatment.

Assay for virus inhibition

Cyamopsis tetragonoloba/SRV and N *Talacum samsun* NN/TMV were the host/virus system employed in the assay for virus infectivity. The two basal leaves of the host plants were treated with buffer extracted and centrifuged sap from *C. aculeatum* leaves or purified protein solution. Post-treatment done 24 hr after the treatment unless otherwise specified. The basal leaves of the control set of plants were treated with distilled water before virus inoculation. Percent inhibition of virus infectivity was calculated by the formula:

$$\text{Percent inhibition} = (C - T/C) \times 100$$

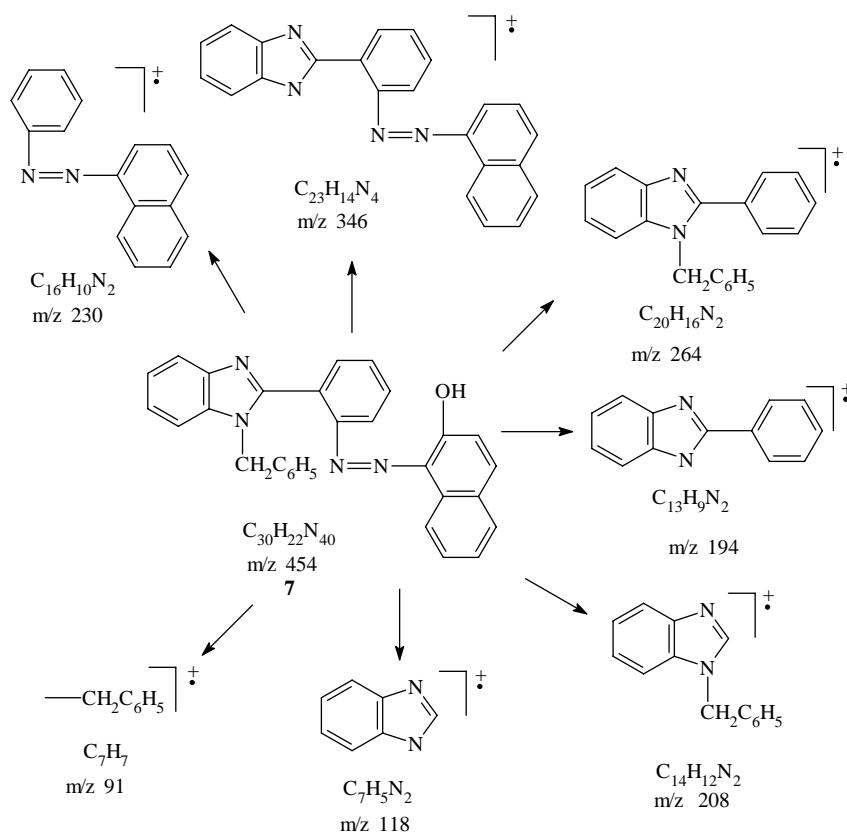
C = average number of lesions on control leaves

T = average number of lesions on tested leaves

Minimum time for induction of systemic resistance

The two lower leaves of the test plants, *N. glutinosa* and *Cyamopsis tetragonoloba* were tested with various N-substituted- and 2-substituted-benzimidazoles. After varying treatment intervals, these leaves were removed and the virus SRV was inoculated on the upper untreated leaves 24 hr later. The lesions were counted and percent reduction in number of lesions were calculated using the formula:

$$\% \text{ inhibition} = \frac{R - L}{L} \times 100$$


Almost all the compounds have shown average % inhibition. Antiviral activities of compounds are summarised in **Table I**

Experimental Section

Melting points were taken in an electrically heated instrument and are uncorrected. Compounds were routinely checked for their purity on silica gel G TLC plates and the spots were visualized by iodine vapours. IR spectra were recorded on a Shimadzu 8201 PC FTIR spectrometer; ¹H NMR spectra on a Bruker DRX 300 MHz FT NMR spectrometer using TMS as internal reference (chemical shifts in δ , ppm), and mass spectra on a Jeol SX-102 spectrometer.

Preparation of 2-substituted-benzimidazole 1-7.

General procedure. *o*-Phenylenediamine (4 g, 0.04 mole) was condensed with carboxylic acids

Scheme III—Mass spectral fragmentation pattern of 1-benzyl-2-[*o*-phenyl-diazo(β-naphthyl)benzimidazole

Table I—Antiviral activity of 1-benzyl-2-substituted-benzimidazoles and 1-(*p*-chlorobenzyl)-2-substituted-benzimidazoles

Sl. No.	Average number of lesions		% inhibition	
	Site leaf	Remote leaf	Site leaf	Remote leaf
Control	133	130		
1	124	90	12.5	32.3
2	158	85	-17.5	34.6
3	124	88	15.6	28.6
4	119	99	10.9	23.4
5	125	92	20.4	38.1
6	111	98	36.3	15.6
7	120	110	17.9	25.0
8	85	89	36.5	31.9
9	86	90	32.9	23.6
10	125	119	6.7	8.4
11	112	102	24.6	16.3
12	130	127	2.9	2.3
13	100	94	10.5	9.5
14	110	98	17.9	25.0

(0.03 mole) in 50 mL 4 N. HCl. The reaction mixture was stirred for about 4 hr with magnetic stirrer at 80°C. The compounds were precipitated by adding concentrated ammonia solution, filtered through suction and washed with cold water. Compounds were recrystallized from water and ethanol.

Compound 1: Yield 4.6 g (61%), m.p. 256°C; ^1H NMR (CD_3OD): δ 7.2 (m, 4H, ArH), 3.4 (t, 2H, H-2'), 3.2 (s, 1H, NH), 2.9 (t, 2H, H-1'); MS: m/z 190 (M^+), 146 ($\text{C}_9\text{H}_{10}\text{N}_2$), 119 ($\text{C}_4\text{H}_{11}\text{N}_2\text{O}_2$), 77 (C_6H_5), 74 ($\text{C}_3\text{H}_{10}\text{N}_2$), 55 ($\text{C}_3\text{H}_5\text{N}$). Anal. Calcd for $\text{C}_{10}\text{H}_{10}\text{N}_2\text{O}_2$: C, 63.16; H, 5.26; N, 14.73. Found: C, 62.76; H, 5.32; N, 15.42%.

Compound 2: Yield 5.7 g (68%), m.p. 145°C; ^1H NMR (CD_3OD): δ 7.9 (m, 8H, ArH), 4.8 (s, 1H, OH), 3.2 (s, 1H, NH); MS: m/z 210 (M^+), 194 ($\text{C}_{13}\text{H}_{10}\text{N}_2$), 122 ($\text{C}_7\text{H}_{10}\text{N}_2$), 103 ($\text{C}_7\text{H}_5\text{N}$), 77 (C_6H_5). Anal. Calcd for $\text{C}_{13}\text{H}_{10}\text{N}_2\text{O}$: C, 74.28; H, 4.75; N, 13.33. Found: C, 73.19; H, 5.31; N, 13.76%.

Compound 3: Yield 6.5 g (74%), m.p. 120°C; ^1H NMR (CD_3OD): δ 7.7 (m, 5H, ArH), 7.2 (m, 4H, ArH), 3.9 (d, 1H, H-2'), 3.4 (s, 1H, NH), 3.1 (d, 1H, H-1'); MS: m/z 220 (M^+), 148 ($\text{C}_9\text{H}_{12}\text{N}_2$), 129

(C₉H₇N), 104 (C₈H₈), 93 (C₆H₄N), 77 (C₆H₅). Anal. Calcd for C₁₅H₁₂N₂: C, 81.81; H, 5.45; N, 12.72. Found: C, 80.93; H, 6.12; N, 12.93%.

Compound 4: Yield 6.9 g (79%), m.p. 155°C; ¹H NMR (CD₃OD): δ 7.2 (m, 4H, ArH), 3.3 (s, 1H, NH), 2.8 (t, 2H, H-4'), 2.4 (m, 4H, H-2', H-3'), 2.1 (t, 2H, H-1'); MS: m/z 218 (M⁺), 174 (C₁₁H₁₄N₂), 146 (C₆H₁₄N₂O₂), 102 (C₅H₁₄N₂), 93 (C₆H₇N), 83 (C₅H₉N), 77 (C₆H₅), 56 (C₄H₈). Anal. Calcd for C₁₂H₁₄N₂O₂: C, 66.05; H, 6.42; N, 12.84. Found: C, 65.87; H, 7.15; N, 12.14%.

Compound 5: Yield 7.5 g (85%), m.p. 270°C; ¹H NMR (CD₃OD): δ 7.3 (m, 4H, ArH), 4.4 (s, 2H, OH), 3.9 (d, 1H, H-2'), 3.4 (d, 1H, H-1'), 3.2 (s, 1H, NH); MS: m/z 222 (M⁺), 178 (C₉H₁₀N₂O₂), 150 (C₄H₁₀N₂O₄), 148 (C₈H₈N₂O), 131 (C₄H₅NO₄), 106 (C₃H₆O₄), 93 (C₆H₇N), 77 (C₆H₅). Anal. Calcd for C₁₀H₁₀N₂O₄: C, 54.05; H, 4.50; N, 12.61. Found: C, 54.97; H, 5.01; N, 12.07%.

Compound 6: Yield 7.5 g (79%), m.p. 190°C; ¹H NMR (CD₃OD): δ 7.8 (m, 5H, ArH), 7.3 (m, 4H, ArH), 3.1 (s, 1H, NH); MS: m/z 238 (M⁺), 194 (C₁₃H₁₀N₂), 122 (C₇H₁₀N₂), 103 (C₇H₅N), 93 (C₆H₇N), 77 (C₆H₅). Anal. Calcd for C₁₄H₁₀N₂O₂: C, 70.59; H, 4.20; N, 11.79. Found: C, 71.14; H, 5.42; N, 12.07%.

Compound 7: Yield 9.8 g (67%), m.p. 210°C; ¹H NMR (CD₃OD): δ 5.4 (1H, s), δ 3.9 (1H, s), 7.9-9.1 (14H, m); MS: m/z 364 (M⁺), 194 (C₁₃H₁₀N₂), 144 (C₁₀H₈O), 128 (C₁₀H₈), 122 (C₇H₁₀N₂), 103 (C₇H₅N), 93 (C₆H₇N), 77 (C₆H₅). Anal. Calcd for C₂₃H₁₆N₄O: C, 75.82; H, 4.39; N, 15.38. Found: C, 75.14; H, 3.99; N, 15.87%.

Preparation of 1-benzyl 2-substituted-benzimidazoles 8-14. General procedure. 2-Substituted-benzimidazoles **1-7** (0.02 mole) were treated with benzyl chloride (2.5 g, 0.02 mole) in the presence of a little quantity of sodium hydride (2 g) in THF. The reaction mixture was stirred for 8-12 hr at 40°C. Excess solvent was removed by distillation and crude product was washed with water, extracted with ethyl acetate and finally recrystallized from water and ethanol.

Compound 8: Yield 4.16 g (79%), m.p. 102°C; IR (KBr): 3540 (O-H stretching), 1722 (C=O stretching), 1214 cm⁻¹ (C-N stretching); ¹H NMR (CDCl₃): δ 7.4 (m, 9H, ArH), 2.6 (t, 2H, 2"-CH₂), 2.1 (t, 2H, 1"-CH₂), 2.4 (s, 1H, 1'-CH₂); MS: m/z 280 (M⁺), 236 (C₁₆H₁₆N₂), 208 (C₁₄H₁₂N₂), 143 (C₉H₈N₂), 140 (C₆H₈N₂O₂), 118 (C₇H₆N₂), 91 (C₇H₇), 72 (C₃H₈N₂),

58 (C₃H₈N). Anal. Calcd for C₁₇H₁₆N₂O₂: C, 77.27; H, 6.06; N, 10.60. Found: C, 76.03; H, 6.12; N 10.52%.

Compound 9: Yield 4.10 g (68%), m.p. 238°C; IR (KBr): 3540 (OH stretching), 1216 cm⁻¹ (C-N stretching); ¹H NMR (CDCl₃): δ 8.2 (m, 4H, ArH), 7.7 (m, 5H, ArH), 7.3 (m, 4H, ArH), 4.3 (s, 1H, OH), 2.5 (s, 2H, 1'-CH₂); MS: m/z 300 (M⁺), 284 (C₂₀H₁₆N₂), 234 (C₁₆H₁₄N₂), 208 (C₁₄H₁₂N₂), 194 (C₁₃H₁₀N₂), 144 (C₉H₈N₂), 118 (C₇H₆N₂), 103 (C₇H₅N), 91 (C₇H₇). Anal. Calcd for C₂₀H₁₆N₂O: C, 80.0; H, 5.33; N, 9.33. Found: C, 80.33; H, 6.12; N 9.14%.

Compound 10: Yield 4.12 g (67%), m.p. 120°C; ¹H NMR (CDCl₃): δ 8.1 (m, 5H, ArH), 7.5 (m, 5H, ArH), 7.2 (m, 4H, ArH), 4.3 (d, 1H, -CH), 3.9 (d, 1H, -CH), 2.5 (s, 2H, 1'-CH₂); MS: m/z 310 (M⁺), 234 (C₁₆H₁₄N₂), 220 (C₁₅H₁₂N₂), 208 (C₁₄H₁₂N₂), 148 (C₉H₁₂N₂), 144 (C₉H₈N₂), 132 (C₉H₁₀N), 118 (C₇H₆N₂), 91 (C₇H₇), 77 (C₆H₅). Anal. Calcd for C₂₂H₁₆N₂: C, 85.16; H, 5.80; N, 9.03. Found: C, 85.63; H, 5.92; N 9.79%.

Compound 11: Yield 3.92 g (64%), m.p. 133°C; ¹H NMR (CDCl₃): δ 7.8 (m, 5H, ArH), 7.3 (m, 4H, ArH), 3.3 (t, 2H, 4"-CH₂), 2.8 (t, 2H, 1"-CH₂), 2.4 (s, 2H, 1'-CH₂), 2.4 (t, 4H, 2"-CH₂, 3"-CH₂); MS: m/z 308 (M⁺), 236 (C₁₆H₁₆N₂), 208 (C₁₄H₁₂N₂), 172 (C₁₁H₁₂N₂), 168 (C₈H₁₂N₂O₂), 144 (C₅H₁₄N₂), 118 (C₇H₆N₂), 102 (C₅H₁₄N₂), 91 (C₇H₇), 85 (C₅H₁₁N), 58 (C₄H₁₀). Anal. Calcd for C₁₉H₂₀N₂O₂: C, 74.02; H, 6.49; N, 9.09. Found: C, 74.92; H, 7.15; N, 8.72%.

Compound 12: Yield 3.96 g (63%), m.p. 180°C; ¹H NMR (CDCl₃): δ 7.8 (m, 5H, ArH), 7.2 (m, 4H, ArH), 3.5 (d, 1H, 2"-CH), 3.2 (d, 1H, 1"-CH), 2.6 (s, 2H, 1'-CH₂); MS: m/z 312 (M⁺), 234 (C₁₆H₁₄N₂), 222 (C₁₀H₁₀N₂O₄), 208 (C₁₄H₁₂N₂), 178 (C₉H₁₀N₂O₂), 118 (C₇H₆N₂), 91 (C₇H₇). Anal. Calcd for C₁₇H₁₆N₂O₄: C, 65.39; H, 5.13; N, 8.97. Found: C, 65.18; H, 6.02; N, 9.33%.

Compound 13: Yield 5.68 g (87%), m.p. 196°C; ¹H NMR (CDCl₃): δ 7.8 (m, 5H, ArH), 7.2 (m, 4H, ArH), 3.5 (d, 1H, 2"-CH), 3.2 (d, 1H, 1"-CH), 2.6 (s, 2H, 1'-CH₂); MS: m/z 312 (M⁺), 234 (C₁₆H₁₄N₂), 222 (C₁₀H₁₀N₂O₄), 208 (C₁₄H₁₂N₂), 178 (C₉H₁₀N₂O₂), 118 (C₇H₆N₂), 91 (C₇H₇). Anal. Calcd for C₁₇H₁₆N₂O₄: C, 65.39; H, 5.13; N, 8.97. Found: C, 65.18; H, 6.02; N, 9.33%.

Compound 14: Yield 7.3 g (80%), m.p. 275°C; ¹H NMR (CDCl₃): δ 8.1 (m, 8H, ArH), 7.6 (m, 7H, ArH), 7.2 (m, 4H, ArH), 2.4 (s, 2H, 1'-CH₂); MS: m/z

454 (M^+), 346 ($C_{23}H_{14}N_4$), 264 ($C_{20}H_{16}N_2$), 230 ($C_{16}H_{10}N_2$), 208 ($C_{14}H_{12}N_2$), 194 ($C_{13}H_{10}N_2$), 128 ($C_{10}H_8$), 118 ($C_7H_6N_2$), 91 (C_7H_7). Anal. Calcd for $C_{30}H_{22}N_4O$: C, 79.29; H, 4.85; N, 12.33. Found: C, 78.13; H, 5.01; N, 12.33%.

Preparation of 1-(*p*-chlorophenyl)-2-substituted benzimidazoles 15-21. General procedure. A mixture of 2-substituted benzimidazoles **1-7** (0.02 mole) and *p*-dichlorobenzene (2.92 g, 0.02 mole) dissolved in ethanol (20 mL) in the presence of a little quantity of sodium hydride (2 g) and tetrahydrofuran (40 mL) stirred for 10-16 hr at 40°C. The precipitated product was filtered and excess solute was removed by distillation. The crude product was washed with water, extracted with ethyl acetate and finally recrystallized from water and ethanol.

Compound 15: Yield 4.62 g (77%), m.p. 178°C; 1H NMR ($CDCl_3$): δ 7.8 (m, 4H, ArH), 7.2 (m, 4H, ArH), 2.8 (t, 2H, 2"-CH₂), 2.3 (t, 2H, 1"-CH₂); MS: m/z 300 (M^+), 256 ($C_{15}H_{13}N_2Cl$), 248 ($C_{12}H_9N_2O_2Cl$), 228 ($C_{13}H_9N_2Cl$), 194 ($C_{13}H_{10}N_2$), 146 ($C_9H_{10}N_2$), 118 ($C_7H_6N_2$), 112 (C_6H_5Cl), 77 (C_6H_5), 72 ($C_3H_8N_2$), 57 (C_3H_7N). Anal. Calcd for $C_{16}H_{13}N_2O_2Cl$: C, 64; H, 4.33; N, 9.33. Found: C, 63.87; H, 5.01; N, 10.07%.

Compound 16: Yield 5.2 g (81%), m.p. 148°C; 1H NMR ($CDCl_3$): δ 8.1 (m, 4H, ArH), 7.7 (m, 5H, ArH), 7.1 (m, 4H, ArH), 4.3 (s, 1H, OH); MS: m/z 320 (M^+), 304 ($C_{19}H_{13}N_2Cl$), 228 ($C_{13}H_9N_2Cl$), 216 ($C_{15}H_8N_2$), 194 ($C_{13}H_{10}N_2$), 144 ($C_{10}H_{10}N_2$), 118 ($C_7H_6N_2$), 112 (C_6H_5Cl), 77 (C_6H_5). Anal. Calcd for $C_{19}H_{13}N_2OCl$: C, 73.54; H, 4.19; N, 9.03. Found: C, 73.87; H, 4.77; N, 9.88%.

Compound 17: Yield 4.86 g (74%), m.p. 58°C; 1H NMR ($CDCl_3$): δ 7.9 (m, 8H, ArH), 7.1 (m, 5H, ArH), 2.9 (d, 1H, 2"-CH), 2.4 (d, 1H, 1"-CH); MS: m/z 330 (M^+), 254 ($C_{15}H_{11}N_2Cl$), 228 ($C_{13}H_9N_2Cl$), 194 ($C_{13}H_{10}N_2$), 148 ($C_9H_{12}N_2$), 144 ($C_{10}H_{10}N_2$), 131 (C_9H_9N), 118 ($C_7H_6N_2$), 112 (C_6H_5Cl), 104 (C_8H_8), 77 (C_6H_5). Anal. Calcd for $C_{21}H_{15}N_2Cl$: C, 76.36; H, 4.54; N, 8.49. Found: C, 77.03; H, 4.93; N, 8.94%.

Compound 18: Yield 5.32 g (81%), m.p. 240°C; 1H NMR ($CDCl_3$): δ 7.8 (m, 5H, ArH), 7.3 (m, 4H, ArH), 3.2 (t, 2H, 4"-CH₂), 2.7 (t, 2H, 1"-CH₂), 2.2 (m, 4H, 2"-CH₂, 3"-CH₂); MS: m/z 328 (M^+), 284 ($C_{17}H_{17}N_2Cl$), 256 ($C_{15}H_{14}N_2Cl$), 232 ($C_{13}H_{13}N_2Cl$), 228 ($C_{13}H_9N_2Cl$), 194 ($C_{13}H_{10}N_2$), 172 ($C_{11}H_{12}N_2$), 118 ($C_7H_6N_2$), 112 (C_6H_5Cl), 102 ($C_5H_{14}N_2$), 85 ($C_5H_{11}N$), 77 (C_6H_5), 58 (C_4H_{10}). Anal. Calcd for $C_{18}H_{17}N_2O_2Cl$: C, 65.85; H, 5.18; N, 8.53. Found: C, 65.12; H, 5.29; N, 8.87%.

Compound 19: Yield 4.88 g (73%), m.p. 82°C; 1H NMR ($CDCl_3$): δ 7.8 (m, 4H, ArH), 7.1 (m, 4H, ArH), 4.3 (d, 1H, 2"-CH), 3.7 (d, 1H, 1"-CH); MS: m/z 332 (M^+), 288 ($C_{15}H_{13}N_2O_2Cl$), 254 ($C_{15}H_{11}N_2Cl$), 228 ($C_{13}H_9N_2Cl$), 194 ($C_{13}H_{10}N_2$), 148 ($C_4H_8N_2O_4$), 118 ($C_7H_6N_2$), 112 (C_6H_5Cl), 89 ($C_3H_7NO_2$), 77 (C_6H_5). Anal. Calcd for $C_{16}H_{13}N_2O_4Cl$: C, 57.83; H, 3.91; N, 8.43. Found: C, 57.13; H, 3.12; N, 9.06%.

Compound 20: Yield 4.48 g (64%), m.p. 316°C; 1H NMR ($CDCl_3$): δ 8.2 (m, 4H, ArH), 7.5 (m, 4H, ArH), 7.1 (m, 4H, ArH); MS: m/z 348 (M^+), 304 ($C_{19}H_{13}N_2Cl$), 270 ($C_{19}H_{14}N_2$), 228 ($C_{13}H_9N_2Cl$), 194 ($C_{13}H_{10}N_2$), 118 ($C_7H_6N_2$), 112 (C_6H_5Cl), 77 (C_6H_5). Anal. Calcd for $C_{20}H_{13}N_2O_2Cl$: C, 68.96; H, 3.73; N, 8.04. Found: C, 69.33; H, 4.08; N, 8.88%.

Compound 21: Yield 4.74 g (50%), m.p. 318°C; 1H NMR ($CDCl_3$): δ 8.2 (m, 8H, ArH), 7.7 (m, 6H, ArH), 7.1 (m, 4H, ArH), 4.4 (s, 1H, OH); MS: m/z 474 (M^+), 304 ($C_{19}H_{13}N_2Cl$), 270 ($C_{19}H_{14}N_2$), 230 ($C_{16}H_{10}N_2$), 228 ($C_{13}H_9N_2Cl$), 218 ($C_{15}H_{10}N_2$), 194 ($C_{13}H_{10}N_2$), 176 ($C_9H_6N_2Cl$), 128 ($C_{10}H_8$), 118 ($C_7H_6N_2$), 112 (C_6H_5Cl), 77 (C_6H_5). Anal. Calcd for $C_{29}H_{19}N_4OCl$: C, 73.41; H, 4; N, 11.81. Found: C, 73.87; H, 4.32; N, 11.91%.

References

- 1 Tewari A K, Mishra L, Verma H N & Mishra A, *Indian J Chem*, 41B, **2002**, 664.
- 2 Tewari A K & Mishra A *Bioorganic Med Chem*, 9, **2001**, 715.
- 3 Stokroekx P, Vander M, Luyckx A M, Grauwels G, Willems M, Andries K, Jonseen M & Jonseen P A, *J Antiviral Res Suppl*, 1, **1990**, 44.
- 4 Andries K, Dewindt B, Snoeks J, Willebronds R, Emeren K V, Stokbroekx P & Jonseen P A, *J Antimicrob Agents Chemother*, 36, **1992**, 100.
- 5 Akihama S, Takahashi K & Miyajima N, *Yakugaku Zasshi*, 94, **1974**, 247.
- 6 Cheng J, Xie J & Luo X, *Bioorganic Mednl Chem Lett*, 15(2), **2005**, 267.
- 7 Beaulieu P L, Bousquet Y, Gauthier J, Gillard J, Marquis M, Mekercher G, Pellerin C, Valois S & Kukolj G, *J Med Chem*, 47(27), **2004**, 6884.
- 8 Williams J D, Ptak R G, Drach J C & Townsend L B, *J Med Chem*, 47 (23), **2004**, 5773.
- 9 Chien T C, Saluja S S, Drach J C & Townsend L B, *J Med Chem*, 47(23), **2004**, 5743.
- 10 Jefferson E A, Seth P P, Robinson D E, Winter D K, Miyaji A, Osgood S A, Swayze E E & Risen L M, *Bioorganic Mednl Chem Lett*, 14(20), **2004**, 5139.
- 11 Eggers H J & Tamm J, *Nature*, 197, **1963**, 1327.
- 12 O'Sullivan D G, Pantic D & Wallis A K, *Experientia*, 23, **1967**, 704.
- 13 Novikolova N, *Akad Nauk King*, 1, **1972**, 52.
- 14 Thomson A D & Smirk B A, *N Z-Jl Bot*, 5, **1967**, 197.